MEMO
To: colleagues interested in K-12 science and mathematics education
From: Jane Jackson
Subject: 2018 annual report on ASU Modeling Workshops

Introduction:
Modeling Instruction in the ASU Department of Physics is world-renowned professional development. We have addressed a severe shortage of qualified physics teachers in Arizona since 1998, even while the number of local physics teachers doubled. Since 2005 we have addressed a shortage of local chemistry teachers, too. A surplus of biology teachers exists, and we have prepared many of them to teach chemistry and/or physics.

Physics is STEM! Physics includes more math, technology, and engineering than any other science course. Physics is the foundation of all sciences, engineering and technology.

High school physics is the chief STEM pathway. A student who takes interactive engagement (hands-on, minds-on) high school physics, such as Modeling Instruction, is three times more likely to earn a STEM degree than a student whose last high school science course was chemistry. (http://modeling.asu.edu/modeling/STEMpathways-PhysicsAZ.htm). Thus, Arizona’s economic health depends on a strong K-12 education that includes robust physics courses.

Modeling Instruction was developed in the 1980’s by Malcolm Wells, a veteran physics teacher at Marcos De Niza High School in Tempe, in collaboration with his doctoral advisor, ASU physics professor David Hestenes. It corrects weaknesses of the traditional lecture-demonstration method, including fragmentation of knowledge, student passivity, and persistence of naive beliefs about the physical world. Courses are coherent, since they are organized around a small number of scientific models. They fit well with the draft Arizona science standards.

Modeling Instruction is designated by the U.S. Department of Education as an Exemplary K-12 science and a Promising K-12 Technology program. It received the 2014 Excellence in Physics Education Award of the American Physical Society (APS), the largest professional organization of physicists worldwide. Change the Equation, a coalition of Fortune 500 CEOs, designated the ASU Modeling Instruction and Master of Natural Science (MNS) degree programs as “Accomplished STEM Programs”: see http://stemworks.wested.org.

Actions for sustainability in 2018:
* Special recognition to long-time supporter Salt River Project, repeat supporters Alliance Bank of Arizona and ON Semiconductor, and first-time supporter Web PT.
* On Sun Devil Giving Day and in winter-spring 2018, 28 people gave to our teacher scholarship endowment fund. Teachers and the community that benefit from Modeling Instruction support it!
* Featured in Campaign ASU 2020: the university-wide comprehensive philanthropic effort.
* All donations to the Improving Physics and Chemistry Teachers endowment fund are matched by Jane Jackson, until $200,000 has been raised. http://www.asufoundation.org/endowmodeling
* By spring 2018 the Arizona legislature, via SB-1038, had awarded $2000 scholarships to 40 K-12 certified teachers, for professional development to add credentials & certifications in physics or chemistry– including becoming qualified to teach Dual Enrollment physics or chemistry.

ASU graduate courses in summer 2018:

Sixty-five physics and chemistry teachers (53 in Arizona) participated in four peer-led Modeling Workshops and three other graduate courses. Included were two teachers sent by the Ministry of Education in Singapore; this brings their total to 54 teachers in 12 years. Singapore students have highest math and science scores in international tests; this is strong evidence for the high quality of Modeling Instruction.

Our courses are for lifelong learning for teachers of high school and community college physics, chemistry, physical science and math. They can lead to a Master of Natural Science (MNS) degree. Since inception in 2001, about 75 teachers have earned this degree. Physics professor Robert Culbertson has directed the MNS degree program since 2005.

Courses are content-intensive; and integration of physics, chemistry, and math is emphasized. The ultimate target is not the teachers themselves but their students. Therefore each course addresses the subject at a level that prepares them to entice and inform their students.

We are thankful to our major donor, Salt River Project, for program support. We are thankful also for partial tuition scholarships provided by ON Semiconductor, Alliance Bank of Arizona, and Web PT. Partial tuition scholarships make our summer program possible. ASU tuition is unaffordable for most teachers. For 8 years, we have not been eligible for state grants; and Federal grants are gone; so we serve half as many Arizona teachers with one-fifth the budget.

About Modeling Instruction:

Modeling Instruction is an innovative, effective hands-on pedagogy: it is guided inquiry structured by modeling principles. It develops in students the ability to analyze data, reach a conclusion and defend it; and it emphasizes experiment design. Other 21st century ‘soft skills’ developed include scientific use of computers and probeware, teamwork, and verbal and written communication skills. Students become self-directed, independent learners. It is aligned with the National Research Council (NRC)’s *Framework for K-12 Science Education*, the research-based document upon which the Next Generation Science Standards (NGSS) have been developed.

Student achievement on tests of concept understanding is typically double that of traditional instruction. A modeler wrote, "One can only imagine the future of science if only we all could understand the power of modeling."

Effect of ASU Modeling Instruction in Arizona:

Since 1998, more than 1100 unique Arizona teachers have taken 15-day Modeling Workshops. We estimate that 35,000 Arizona students benefit each year.

Modeling Instruction is used in many schools in Greater Phoenix, including Hamilton High School in Chandler USD, Red Mountain High School in Mesa USD, Mountain Pointe High School in Tempe UHSD, Arizona School for the Arts, Tempe Preparatory Academy, some Great Hearts Academies, Estrella Mountain Community College, and Chandler-Gilbert Community College. Our main school partner is Phoenix Union High School District in urban Phoenix.

Resources:

* Information about our summer courses: https://physics.asu.edu/content/modeling-instruction-program
Modeling Instruction resources, research, annual reports: http://modeling.asu.edu.

Would you like to contribute to the success of ASU Modeling Instruction and MNS programs by donating a partial tuition scholarship, or contributing to our $1M endowment fund for teacher scholarships? http://asufoundation.org/modeling or http://asufoundation.org/endowmodeling.

SUPPLEMENTARY DETAILS:

Our seven ASU courses for teachers in summer 2018 (most are three graduate credits):

* 4 Modeling Workshops: mechanics, mechanical waves and sound, chemistry (first semester content), and thermodynamics.
* Invited speakers: Carl Davenport, Intel in Chandler (how industry can help increase physics enrollment); Kelli Gamez Warble, ASU physics Teacher-in-Residence (how to encourage girls in physics).

Modeling listservs: We maintain five content-focused listservs for year-round professional development & support of modeling teachers worldwide. As of August 2018, the number of subscribers in each listserv is: physics: 3400 teachers; chemistry: 2000; physical science & middle school science: 1080; biology: 940; 9th grade physics: 580.

Typical teacher comments about ASU Modeling Instruction and MNS programs:

* I’m a better teacher after modeling, I like my job more, I feel the kids walk away with real transferable skills.
* It moves students in the direction of being independent learners, and it puts the responsibility for learning where it belongs - on the students.
* The Modeling program is the only one I have found that is truly grounded in how students learn and attacks head-on the misconceptions students have.
* Thanks to taking physics modeling course work, I am highly qualified in physics.
* I learned a tremendous amount and am all fired up to teach physics this fall!
* Great chem workshop.
* It was, without a doubt, the single greatest professional development experience of my career.

A metropolitan Phoenix teacher in a high-poverty school wrote this eloquent statement in 2008:

"I make about 38k a year. I have a degree in chemical engineering -- I should be making at least double that. This almost kept me out of teaching. But some things are more important than money.

I'm reaching the end of my fourth year teaching science and my second teaching physics. In those last two years, I've doubled the population of students registering for the general physics class at my school. I've poured enormous effort into improving the program. The reason I've been able to do this is because of what I've learned through the modeling program at ASU, both in terms of knowledge and superior teaching practices.

It is by far the best science methodology out there. Unlike traditional science classroom practices, the modeling program stresses the PROCESS of science. Students not only learn the
requisite science curriculum but how to design and implement experiments that will address a question, how to work well in a community of peers, how to collect and process data, how to think logically and critically - basically, how to be effective problem solvers. Not only do these skills serve to help knowledge retention and increase general interest in science but these are skills that transcend the science classroom."

The need for the ASU Modeling Instruction Program:

Arizona has a chronic shortage of high quality teachers of physical sciences. Only about 160 currently employed physics teachers in Arizona are certified in physics. Three-fourths of Greater Phoenix’s physics teachers don’t have a degree in physics; and half of the chemistry teachers don’t have a degree in chemistry. Arizona’s three public universities collectively graduate only a half-dozen physics teachers each year; thus local schools must find physics teachers from in-service teachers of other subjects (usually biology or chemistry) and second-career teachers (often engineers). Teaching jobs go unfilled for lack of highly qualified teachers. (Our program remedied this when we had sufficient funding to provide FREE summer tuition.)

Low salaries drive science teachers out of the profession, and turnover is highest in physics, according to American Institutes for Research -- but numerous physics teachers have written that professional development in the ASU Modeling Instruction Program saved their career! Our survey of 110 teachers revealed that our summer professional development is the best way ASU can help keep them in the classroom. Teachers wrote: “ASU's summer program is a national treasure!” “If I had not found the Modeling Instruction pedagogy, I would most likely left teaching by now because I was so discouraged with the mile-wide, inch-deep approach that I was using.”

The shortage of qualified physics teachers is dire and fast-worsening. In 2017-18, 12 district high schools in Greater Phoenix did not have a physics teacher (out of 100 district high schools total). 25% of rural high schools no longer offer physics. In spring 2016, there were 25 physics job openings in Greater Phoenix (out of 200 physics teaching jobs); some were not filled. A math teacher who was asked by his principal to teach physics wrote, "I'm just trying to do my best until we can find a "real" physics teacher. It seems that they are very hard to come by."

Teachers from overseas (most often from Asia) are hired to teach chemistry, physics, and math in high-poverty schools that have many English language learners (especially in isolated rural schools). Although these teachers are dedicated, a language barrier exists for some, and stability is lacking because their visa is good for only five years.

A practical solution is for schools to ask out-of-field teachers to re-train. Most schools do not do this, unfortunately; they do not prioritize physics. Thus we do it; we recruit teachers to re-train! This is our main strategy, and dozens of out-of-field teachers have told us, “Thanks to taking ASU physics modeling course work, I am highly qualified in physics.”

The chief obstacle for professional development is unaffordability of ASU tuition. Many teachers struggle to pay tuition because their salaries are under $40,000 and they are paying student loans. Salaries were frozen for up to 8 years. Many teachers have young children; some are single parents. Some are putting children through college. They can't afford the ASU summer tuition of ~$2000 for one course. They wrote, “I'd have to choose between feeding my children and taking classes” and “I lose money taking classes instead of working in the summer; to me these classes are worth it, but I could not pay the tuition.” A family of 4 needs an income of twice the official annual poverty threshold of $24,000 to cover basic expenses: housing, food,

How the program is funded:
For the tenth time, the Salt River Project contributed -- in summer 2018, $15,000 for program support. About $32,000 in partial tuition scholarships were awarded, for 27 courses.

Until 2011, we were funded for $225,000 per year for ESEA (aka No Child Left Behind) Title IIA "Improving Teacher Quality" grants administered by the Arizona Board of Regents. ASU provided 55 tuition waivers, and we served up to 130 teachers each summer. That funding source has not been available since 2011. Thus now we serve half as many AZ teachers, with one-fifth the budget. (In summer 2018, 57 teachers took a Modeling Workshop; in 2017 and back to 2008 the summer numbers are 71, 65, 63, 67, 64, 59, 90, 101, 124, and 134.)

In the Federal ESEA reauthorization of December 2015, funding was supposed to be provided for discipline-specific professional development for K-12 science teachers; it hasn’t materialized. If the U.S. goal is to maintain its global competitiveness, it must act on research showing that high school physics is the chief STEM pathway. Long-term professional development of science teachers is essential to improve student learning; 10 years of deliberate practice are needed to become an expert, research shows. Thus teachers need several Modeling Workshops. Details are at http://modeling.asu.edu/modeling/ConvincingDocuments.html

Modeling Workshops nationwide:
Until 2013, our ASU Annual Reports, at http://modeling.asu.edu, included summaries of Modeling Workshops nationwide, which we oversaw. Our scale-up partner, the American Modeling Teachers Association (AMTA), assumed oversight of nationwide Modeling Workshops in 2013 because growth is fast: 48 multi-week Modeling Workshops were held in 2018, in physical, life, and computational sciences. AMTA is a grassroots professional society of, by, and for teachers who use Modeling Instruction - focused on effective teaching. In 2017, Bill Thornburgh of Louisville, Kentucky (amtaexec@modelinginstruction.org) became AMTA Executive Officer. AMTA Modeling Workshops are listed at: http://modelinginstruction.org.

Description of Modeling Workshops:
Modeling Workshops thoroughly address most aspects of science teaching, including integration of teaching methods with course content. Workshops incorporate up-to-date results of physics and science education research, best curriculum materials, use of technology, and experience in collaborative learning and guidance. Workshops focus on all 8 science practices and cross-cutting concepts of the NRC Framework for K-12 Science Education (2012).

Participants are introduced to Modeling Instruction as a systematic approach to design of curriculum and instruction. The name Modeling Instruction expresses an emphasis on making and using conceptual models of phenomena in science as central to learning science. Math instruction is integrated seamlessly in each course by an emphasis on mathematical modeling.

In each workshop, content for an entire semester course is reorganized around models to increase its structural coherence. Participants are supplied with a complete set of course materials and work through activities alternately in roles of student or teacher. Teachers use computers as scientific tools to collect, organize, analyze, visualize, and model real data.