Movies of modelers! Two QuickTime movies of Larry Dukerich's classroom teaching (on mechanics and sound waves); Dwain Desbien (13 minutes), Matt Greenwolfe (2 minutes), Malcolm Wells, Jennifer Dye at Pope John Paul Catholic HS (6 minutes for parents, on pcb), and more (in streaming format. Thanks to Frank Noschese for collecting them.)
Frank Noschese’s Learning Science by Doing Science talk at TEDxNYED explains how he uses Modeling Instruction in his high school courses. (April 2012; 15-minutes)
Seth Guinal-Kupperman's outstanding video on his high school physics course in NYC. includes commentary by Prof. Fernand Brunschwig (12 minutes, 2011)
Aaron Debbink describes Modeling Instruction labs in mechanics in 4 videos at the Arbor Scientific blogs webpage, plus several more. (Each ~15 minutes, 2021 - 2023)
American Modeling Teachers Association (AMTA) YouTube channel has MANY short videos: "Meet a Modeler", "What is Modeling Instruction?", ConnectED talks, and much more!
David Hestenes' 35-minute interview on YouTube about Modeling Instruction! It was in 2014 at KTH Royal Institute of Technology, Stockholm, Sweden. Ambjorn Naeve, Interviewer: he is Head of Knowledge Management Research Group at KTH.
American Modeling Teachers Association (AMTA) website has instructional resources by modelers that anyone can freely download, and easy ways to join this grassroots professional organization. Members can upload instructional resources at content-focused forums.
Science Modeling Talks: podcasts for the public to learn about Modeling Instruction (2019 to present). Outstanding for modelers to learn from, too!
New Visions physics curriculum and instructional resources, developed by long-time modelers Kelly O'Shea and Mark Schober in 2019 and 2020, are FREE and OPEN ACCESS. They are designed for New York Regents Physics courses (1st year honors courses). As of October 2019, units on force and motion, energy, momentum, and circuits have been posted. Sponsored by New Visions for Public Schools and STEMteachersNYC.
Mark Schober’s website has model-based curricula for astronomy, middle school meteorology (built on a particle model), and environmental science. Also, several resources for a course in modeling chemistry that follows physics.
Mark Schober's and other expert modelers' improved paradigm labs for mechanics units 7, 8, and 9 (central force particle model, energy transfer model, and impulsive force model): archive of teacher contributions to the Modeling listserv (with 300 other compilations).
Amusement park physics: The St. Louis Area Physics teachers website has resources for Physics Day at Six Flags. Included are downloadable files for the actual activities, and sample data taken using accelerometers and barometers. Also video clips and activities to help prepare students for Physics Day. Modelers Mark Schober, Rex Rice, & Bill Brinkhorst ran Physics Day at Six Flags for many years. They designed the materials to be "modeling friendly."
Websites by groups of Modeling Instruction teachers:
STEMteachersNYC. Teacher-led
Saturday workshops in physics and chemistry each month; summer Modeling Workshops.
Kansas Modeling
Instruction. (Livebinder: a large website.)
Jamie Vesenka's Physics Alive! podcase with Brad Moser.
For Jamie's Modeling-based curriculum, contact Professor
James Vesenka.
Paul Bianchis physics standards for standards-based grading (SBG): NY state Regents curriculum, reworked in a modeling fashion -- a work in progress, started in fall 2011. He welcomes comments. Mark Schober’s website has several posts on standards-based assessment.
Gregg Swackhamers detailed models for physics II (e&m, waves, light, etc: many Glowscript simulations! 2019). Model-centered. Gregg is a founding Modeling Workshop leader.
Mike Mannix's 9th grade physics website on coding with SNAP (2019). Pyret was too hard, but SNAP works! (Mike has modeled since 2005.)
Tim Burgess' 9th grade physics website has many research studies of 9th grade physics. Most use Modeling Instruction.
Scott Pflaumer's 9th grade physics wiki was built over 5 years. For regular 9th grade. Scott's students make big gains on the FCI, as of 2018.
Joe Mahler's linearizing worksheet (excellent! See also the compilation on linearizing, and how it can improve proportional reasoning.)
Gary Abud's proportional reasoning talk on using "for every" rather than "per" (2017).
Brian Frank's card-sorting physics resources (for college and advanced high school).
Kelly O'Shea's blogpost on her kinematics card-sorting activity.
An NSTA book, "Exemplary Science in Grades 9-12", is available in paperback for $20. Three of the fifteen programs in 15 chapters are about Modeling Instruction! Earl Legleiter (from Kansas) contributed a chapter on his use of Modeling Instruction in physics. Carmela Minaya (from Hawaii) extolled her experiences with Modeling Instruction in chemistry. A chapter by Prof. Julie Luft of ASU features Teresa Potter, a rural Arizona modeler.
Modelers' blogs:
ChemEdx bloggers (note: a great search engine at the chemEdx blog home page!):
Other modelers who blog:
Modeling-friendly bloggers:
MUSE: Modeling for Understanding in Science Education - Earth-Moon-Sun dynamics models for grades 8 & 9 in astronomy. MUSE and Modeling Instruction are compatible. MUSE.ZIP . On a Mac, load the file into your browser, then "save as" a .pdf or .rtf, then print if desired. Includes MUSE publications in .pdf.
Robert Karplus' textbook: Introductory Physics: A Model Approach. 2nd edition edited by Fernand Brunschwig in 2003 and 2011. Outstanding for conceptual physics in grades 11-12 and college. Buy in paperback at Amazon. To order multiple copies for a class, email FBrunsch AT gmail.com. Download a review in The Physics Teacher and a review by two modelers. (Fernand Brunschwig is the "original modeler"; he was Robert Karplus's graduate student at UC-Berkeley, and he taught from the 1st edition.) Fernand Brunschwig developed chapter summaries, teacher notes, more homework problems and answers, tests and quizzes, interactive computer-based demonstrations. Teachers who wish to have them, or who want to contribute materials, should email him at FBrunsch AT gmail.com.
Chapters 1 to 10 of Robert Karplus' textbook, Introductory Physics: A Modeling Approach are FREE on the STEMteachersNYC website. (Scroll down to the section just below "Research.")Fernand Brunschwig's Energy flow diagrams (2018) or Energy flow diagrams (2015 - view) or (download 2015). Fernand Brunschig emphasizes that "Types & forms of energy are just names. Key issues are, as Karplus says: Where and how is energy stored? What changes occur as energy is transferred from source to receiver?"
Modeling Designs for Learning (MoDeLS) is a middle school and upper elementary program at Northwestern University and several other universities. It developed a learning progression for scientific modeling practices. A synopsis.
Tools for Ambitious Science Teaching is a middle school and early high school program at the University of Washington (Mark Windschitl and colleagues) that develops teacher resources for model-based inquiry.
Introductory Physical Science, an outstanding 9th grade textbook, is a foundational resource in the Physical Science with Math Modeling Workshop developed at ASU in 2001. Unfortunately, the authors retired by 2019 and closed down the publishing company. The 9th edition is best. A review
Robert Karplus et al: Workshop on Physics Teaching and the Development of Reasoning
Matter & Interactions web site includes lists of items for desktop experiments on electrostatics, circuits, and magnetism; weblink to Bruce Sherwood's two distance graduate courses at North Carolina State University for physics teachers. Bruce Sherwood and Ruth Chabay do physics education research .
SPIRALPhysics by Paul D'Alessandris, retired in 2018 from Monroe Community College, is a wealth of free online research-based conceptual/quantitative activities for calculus-based physics and algebra-based physics. Dwain Desbien, an expert modeler at Estrella Mountain Community College, uses SPIRALPhysics extensively. An intro by Paul -- excellent! .pdf
ISLE (investigative science learning environment) is super-compatible with Modeling Instruction. It was developed by Eugenia Etkina and Alan Van Heuvelen at Rutgers University for physics courses for prospective teachers, science majors, and physics/engineering majors. ISLE is based on Eugenia's Ph.D. work in Russia and Alan's multiple representations that resulted from his sabbatical with David Hestenes. Eugenia contributed the method of instruction - going from observations to models, to predictions, to testing. ISLE is similar to Modeling Instruction but has less emphasis on discourse. Watch Eugenia Etkina's AAPT 2014 Millikan lecture.
Below are several links to important resources in ISLE.
Scientific Abilities:
model-based activities & labs, rubrics, multiple representations,
video problems, research papers by the Rutgers University PER group.
Rubrics to assess
scientific abilities: (ISLE and PUM: several weblinks,
sample student work and scores) download
The Role of Models in Physics Instruction, by Eugenia Etkinia, Aaron Warren, and Michael Gentile, is an excellent introduction. (6 pages, TPT 2006). It's in the section called "Scientific Abilities". Many other research-based papers on model-based instruction. Three of special interest to modelers are:
Role
of experiments in physics instruction - a process approach,
Eugenia Etkina, Alan Van Heuvelen, David Brookes, David Mills
Investigative
Science Learning Environment - A Science Process Approach
to Learning Physics, Eugenia Etkina, Alan Van Heuvelen. in Research Based
Reform of University Physics, E.F. Redish and P.Cooney (Eds.) (2007)
Transfer
of Scientific Abilities: Building Habits of Mind, by
Eugenia Etkina, Anna Karelina, Maria Ruibal-Villasenor, David Rosengrant,
Rebecca Jordan, Cindy E. Hmelo-Silver (2008: 78-page draft). (For a quick
overview, read the three four-page PERC 2007 papers in the section
"Transfer of Scientific Abilities".]
200 digitized labs, model-based: Physics Teaching Technology (PT3) Resource at Eugenia Etkina's website. Award-winner from Science Journal!
PUM: Physics Union Mathematics by Eugenia
Etkina and colleagues. An implementation of ISLE for physics in grades 8 and
9 & higher.
Read Dr. Etkina's open letter comparing
PUM and Modeling Instruction with PSI, a 9th grade physics teacher training
program in New Jersey.
Responsive
Teaching in Science is Fred Goldberg & David Hammer's K-5 program
of research-informed curriculum and professional development. Responsive teaching
refers to practices of attending and responding to the substance of students'
thinking. It aligns with the essence of scientific practice. The website includes modeling cycles in 3 areas/themes: toy cars, the water
cycle, and electric circuits. Videos and much more! Craig Buszka and Jason
Sullivan led a modeling-style workshop at Montgomery High School in Skillman
NJ in summer 2014 for elementary school teachers in their district, using
this curriculum, and later workshops for STEMteachersNYC.
Minds-on Physics (MOP) is research-based for high school and college, from the University of Massachusetts. Unfortunately, it's out of print. Advice by John Clement, long-time modeler in Houston. View and link. or doc. Download activity A012: Falling Marble - measure
PhET: Free online educational simulations of physical and chemical phenomena. PhET has a promising future in html5.
John Clement's simulations in physics.View and link. or doc. Compatible with Modeling Instruction, Minds-on-Physics, Tools for Scientific Thinking & Real Time Physics labs. John is a long-time modeler in Houston, with a PhD in physics and a wealth of knowledge of physics education research.Molecular Workbench has hundreds of interactive, visual simulations and activities for teaching physics, chemistry, and biology. The model-based activities are primarily of interactions of atoms and molecules, or rule-based genetics. Most simulations require Java 1.5+ for Windows, Linux, and Mac OS X 10.4 and newer. Also, if you want to build your own interactive simulations (molecular, mechanical, and discrete-element), download free open-source software that includes a report and assessment system for collecting data and measuring learning.
V Python Free open-source computer simulation software; contributed programs in physics, earth science, etc. V Python is used in the two model-based AP-C/university physics textbooks, "Matter and Interactions", by Bruce Sherwood and Ruth Chabay. Comments by Matt Greenwolfe, Gregg Swackhamer, Martin Mason & Aaron Titus.
Glowscript is free open-source computer simulation software by Bruce Sherwood and Ruth Chabay. Create 3-D animations and display them on the web. View Gregg Swackhamer's Glowscript animations in physics & chemistry (2013). Download Gregg's listserv post. Visit Casey Rutherford's Glowscript tutorials (2017). Visit Jim Deane's Glowscript and VPython lessons/tutorials (2017).
SOFTWARE CARPENTRY, A non-profit that develops lessons on scientific computing (e.g., Glowscript, Vpython). Recommended by Nathan Moore, physics professor & Modeling Workshop host at Winona State University.
Graphs and Tracks: motion of ball on a ramp (& worksheet). A long-time favorite, upgraded in 2018 or so!
The Scale of the Universe This interactive animation is a modern version of the classic POWERS OF TEN video. It takes you all the way from the (estimated) outer reaches of the universe down to the Planck length. Humans are in the middle. Click on different objects as they zoom by to learn more. For hand-held devices, too, in 2016.
Universe & More: 2 fun curve matching games, Crack the Circuit, other games).- by Matt Blackman, an ISLE/PUM master teacher & PhysTEC Teacher of the Year. Position vs. time curves and velocity vs. time curves. The
student enters initial conditions. Then the simulation plots the student's
curve against the curve to be matched - includes worksheets & advanced options. Also MANY physics videos.
Teaching
with Models
(SERC Pedagogic Service) discusses modeling in geology/earth
science. Dozens of examples of models for K-12 courses in biology, chemistry,
environmental science, geoscience, math, physics!
Conceptual
models.
Graphical/mathematical
and statistical models.
Model-Eliciting
Activities (SERC Pedagogic Service) are activities
that encourage students to invent and test models. Discussion and many examples.
For
statistics courses.
For
k-12 math or engineering courses. Click on: Case Studies
for Kids - Archive site of MEAs for kids
Classroom Test of Scientific Reasoning
(CTSR) - free response vs in 1995 by Anton Lawson, with answer sheet.
For the password, e-mail jane.jackson@asu.edu .
Formal Reasoning Test used in Modeling
Instruction since 1990 and answer sheet.
For the password, e-mail jane.jackson@asu.edu .
Creation of National Norms for Scientific Thinking Skills Using the Classroom Test of Scientific Reasoning, by Jacqueline ODonnell (Winona State University, 2011; thesis. 392 pages, 2.6MB in pdf). The multiple-choice CTSR was used to create national thinking skill norms. Data from ~5500 students in Minnesota, Montana, and Wisconsin indicate that ~ 50 % of students in grades 7 - 9 are concrete thinkers and ~ 85% of students graduating from high school are not formal thinkers. Gender and poverty results are discussed.
CLASS: Colorado Learning Attitudes about Science Survey. Versions for physics, chemistry, and biology.
RTOP: View a short
article. RTOP includes formative assessment, evidence
of inquiry, pedagogical content knowledge. By Paul Hickman, Drew Isola,
& Mark Reif (2010). Download.
The RTOP and related instruments can be downloaded here.
DIAGNOSER: research-based
formative assessment on the web, for middle school
& high school physics, chemistry, physical science, & math.
Diagnoser Project: Jim
Minstrell and Pam Kraus' site. Evaluation tools, diagnostic learning environment,
references, research publications.
ConcepTests (clicker questions) and Paul Hewitt's NextTime Questions are formative assessment used by some modelers and in peer instruction. View a list of URLs in sciences and math. Download
3 Truths and a Lie with Force Diagrams - .doc or pdf : game-like formative assessment that is easy enough to have a substitute teacher use. Contributed by Donna Richardson in Feb. 2018. Forces trading cards , forces chart
CASE: Cognitive Acceleration through Science Education, by
Shayer and Adey. A modeling-friendly program of biweekly interventions for
middle school & higher.
Curriculum
Analysis Taxonomy of Reasoning Skills. Important for middle school through college! Released in 2013!
Effects
of Cognitive Acceleration (Dr. Adey's last article -- 2011)
History
and evidence (UNESCO article)
CASE
sequence of lessons
Scientific
Reasoning Skills -- a PowerPoint presentation to 75 modelers
at ASU in July 2003, by Dr. Philip Adey. He was Director
of the Centre for the Advancement of Thinking, University of London, England.
CASE: recommended references, by physics professor Nathan Moore
of Winona State University; and how to get and score the Lawson Classroom
Test of Scientific Reasoning (CTSR): view
or download
Lawson Classroom Test of Scientific Reasoning (CTSR) research, by Coletta, Phillips, and modeler Jeff Steinert . Download publications free at http://myweb.lmu.edu/jphillips/per/ajp-12_05.pdf and http:/myweb.lmu.edu/jphillips/per/2007-TPT.pdf and http://myweb.lmu.edu/jphillips/per/2007-PhysRev.pdf
Anton "Tony" Lawson's two articles on his biology course for non-science
students, which had extremely high gains on the CTSR.
Promoting
Creative and Critical Thinking Skills in College Biology, by Anton Lawson
(Bioscene, 2001). Download in pdf.
Basic
Theories in Biology, by Anton Lawson. (This unpublished
paper accompanies the above publication . What he calls theories, we call
models. He agrees; read his introduction.)
Thinking in Physics, by Vince Coletta. A paperback book in 2014 that is a "must read" for all high school and college physics teachers. Order a FREE copy. Download
Richard Hakes blog on physics education research. (Unfortunately, his Indiana University website, a goldmine of SDI labs, his FCI research, etc. was removed.)
PER User's Guide, an extensive website on ComPADRE that was begun in 2012.
Ken and Pat Heller's research on cooperative learning, at University of Minnesota. Click on Research. Many context-rich problems
TIMSS video study has a dozen reports on research about the need for a coherent storyline in K-12 science courses.
A Private Universe . This crucial video on student preconceptions includes interviews of Harvard University faculty & students.
Inventive Learning & Contrasting Cases. Read Practicing versus inventing with contrasting cases: The effects of telling first on learning and transfer by Daniel L. Schwartz et al (2013). Read this summary of A Time for Telling, by Schwartz and Bransford (1998). (The summary is by Bud Nye, a modeler.)
Physics Invention Tasks help students improve proportional reasoning. Students use data from contrasting cases to invent ratio quantities, etc. It takes little time in the classroom! Field-tested in middle school through college. Developed by Suzanne Brahmia, formerly at Rutgers University and by 2019 at the University of Washington.
More research by Dan Schwartz's group at Stanford University, at the intersection of cognitive science, education, and computer science.Richard Hake and Sanjoy Mahajan created the "Benezet Centre", which has downloadable versions of Benezet's articles. Students in New Hampshire were not subjected to arithmetic algorithms until grade 6. In earlier grades they read, invented, and discussed stories and problems; estimated quantities; and enjoyed finding and interpreting quantities relevant to their lives. In grade 6, with 4 months of formal training, they caught up to regular students.
GROWTH MINDSET resources (& mindset surveys for students) are at PERTS, an initiative by Carol Dweck at Stanford, David Yaeger at UT-Austin, and colleagues.
Develop Thinking Skills: a short reading assignment for students, in the spirit of Carl Dweck's work. Contributed by John Clement, long-time modeler in Houston.
How Science Works: a 21-page downloadable article on the nature of science -- scientific methods: (home page: Understanding Science. )
Interactive Engagement is the most effective teaching strategy! Modeling Instruction is an enactment of it. ICAP Framework: Micki Chi's research at ASU. Chi & Wylie (2014). Summary of interactive engagement, constructivism, active learning, and passive learning.
Talk Science Primer, from TERC. ESSENTIAL resource for Modeling Workshops! The videos are great, too; Seth Furlow's favorite is Reasons from Evidence.
Ron Gray’s webpage at NAU, on teaching about productive talk in the science classroom, has links to many resources.CIMM videos. For a powerful use of whiteboards in 3rd grade, look at Hidden Hills Elementary School 3rd graders talking about CIMM! These are kids in the lowest level math class, based on their 2nd grade AIMS (AZ state test) scores. CIMM, developed by Dr. Rob MacDuff when he worked with David Hestenes at ASU, is an effective, unifying method of working with quantity, using multiple representations. More at the CIMM webpage .
200 digitized labs, model-based: Physics Teaching Technology (PT3) Resource at Eugenia Etkina's ISLE website. FREE! Use with any device. They have questions, but not sophisticated tools to measure distances and times as in PIVOT, but the logical progression is the same. Some have higher resolution and are on YouTube, emphasizing students collecting data from their phones. FREE. (Vernier Software has free videos, too. On the Vernier website, go to 'remote learning'.)
Pivot Interactives (formerly called Direct Measurement videos). Many videos in physics and chemistry (and a few in biology). They include grids, rulers, frame counters that allow students to make measurements. Each
video has questions. Some sample lesson plans. Costs $5/student in 2020. 2 dozen vISLE labs can be used FREE for a limited time. A group of modelers, led by Matt Greenwolfe and Janelle Hollingshead, are making videos in 2020-21 to contribute. Peter
Bohacek’s 2013 powerpoint on how to use them
in class.
Atomsmith Classroom Online. Many 3-D virtual interactive labs for chemistry, biology, & physical science. Model-based. Not free. Highly recommended by Larry Dukerich & the chem modeling development team.
Jason Stark's virtual density lab (ModChem: Unit 1. 2020)
Lee Trampleasure's hundreds of YouTube videos on physics and chemistry, using Modeling Instruction. For example, 2 make-up labs: 1) developing the constant acceleration particle model (Unit 3 ramp lab): a whiteboarding session. 2) speed of sound. He's still making them in 2021.
16 clips from Philip Morrison's Ring of Truth. These include clips that Larry Dukerich and other Modeling Workshop leaders laud for chemistry and physics classes. Bookmark the playlist for your class.
Frank
Noschese's physics videos to analyze. Many!
Derek Muller's videos that straighten out naive conceptions, & his PhD dissertation. View or download.
Eureka! videos. View a list of URLs
or download
4 optics tutorials online (particle model), for
self-study -- by Prof. Barbara Hoeling, made when she taught at Cal Poly - Pomona. For
high school and college students, and middle school teachers PD.
Read her research on them in The Physics Teacher
and in American Journal of Physics. Modelers like them.
Mechanical Universe videos. From Cal Tech: 52 half-hour episodes and 4 five-minute demos of computer animations that unify the big ideas of physics! on archive.org.
Interactive Video Vignettes (IVVs). Use IVVs for individual student / group tutorials for remediation, for in-class small-group activity, or for kids who miss class, or as flipped-classroom lecture segments. Give extra credit for completion of an IVV, on an exam or as homework.-- NSF videos for classroom use (4 minutes -- recommended by Buffy Cushman-Patz,
a modeler in Hawaii). View or download
-- Effective
Tech for STEM videos (collection & links. This website was created
by Frank Noschese, a modeler in New York, for an inservice.)
--YouTube videos on LabPro, LoggerPro, motion
detector (download)
View physics review websites or download.
Physics for Future Presidents. Search on YouTube for Richard Muller's Physics 10 course for non-science majors at UC-Berkeley. You can view all 25 lectures; each is 1 hour 15 minutes long. It begins with energy and includes "what is most important". David Hestenes recommends it for his discussion of energy. (View an introduction.) or (Download an introduction.)
Al Bartlett's website on Arithmetic, Population, and Energy: Sustainability 101. View a listserv post by/about Al Bartlett in 2013. Download. He was Professor of Physics at the University of Colorado. "The greatest shortoming of the human race is our inability to understand the exponential function." David Hestenes recommends it -- used in our ASU MNS course PHS 542: Integrated Mathematics and Physics.
Video on electric fields, cell towers, and wi-fi, by Bruce Sherwood of NCSU (2008). It helps city staff, residents, and company representatives in discussing issues. (Scroll to the bottom of the page.) Alternate URL
Sustainable Energy - Without the Hot Air, by David JC MacKay, Professor of Physics at Cambridge University (2009). Download free. “I would choose Sustainable Energy as a text over its competitors because MacKay has moved the energy discussion in the direction where energy alternatives can be considered quantitatively." --American Journal of Physics
Teachers
Clearinghouse Newsletter for Science and Society Education is
archived at the AAPT "Physics and Society Education" (Physoc) website.
The editor is John Roeder, a physics modeler and PTRA leader; he co-founded
the newsletter in 1982.
Updating the Climate Science:
What Path is the Real World Following? by Makiko Sato & James Hansen (PhD
in physics), Columbia University. Several worldwide graphs!
“Our aim is to help people understand global climate change — and how the
factors that drive climate are changing.”
Three websites that focus on education in climate change and are funded by
well-known agencies in K-12 (reviewed by physics modeler & PTRA leader
John Roeder, in the Teachers Clearinghouse Newsletter: Winter-Spring 2013,
pages 23-24. See above):
1) CLEAN (from TERC, SERC, NOAA, etc.). here
2) Carbon Connections (from BSCS. A multdisciplinary online module for grades
9 to 12). here
3) Climate Science Toolkit (from the American Chemical Society). here
Climate Science powerpoint (2019) by John Roeder, for high school science classes.
Carl Wennings' publications
are valuable to share with principals and department chairmen.
Carl directed the physics teacher preparation program at Illinois State University
until 2008. He organized Modeling Workshops for 100 Illinois physics teachers.
Minimizing resistance to inquiry-oriented instruction: The importance of climate setting. Journal of Physics Teacher Education Online (JPTEO) 3(2), December 2005, pp. 10-15.
Whiteboarding and Socratic dialogues: Questions and answers. JPTEO 3(1), September 2005, pp.3-10.
Engaging students in conducting Socratic dialogues: Suggestions for science teachers. JPTEO 4(1), Autumn 2006, pp. 10-13. (with Thomas W. Holbrook and James Stankevitz).
Assessing inquiry skills as a component of scientific literacy. JPTEO 4(2), Winter 2007, pp. 21-24. Also, see the Scientific Inquiry Literacy Test (ScInqLiT) - (PDF); contact Carl Wenning wenning@phy.ilstu.edu for password.
Assessing nature-of-science literacy as one component of scientific literacy. JPTEO 3(4), Summer 2006, pp. 3-14. Also, see the associated Nature of Science Literacy Test (NOSLiT) - password protected PDF; contact Carl Wenning for password. )
How high school teachers can recruit their students to become science teachers (several links & resources)
Carl Wenning and his daughter, Rebecca Vieyra (an award-winning physics modeler and former AAPT K-12 Director) wrote a useful e-book: Teaching High School Physics. Buy it at Amazon.com or click here .
This page is maintained by Jane Jackson - jane.jackson@asu.edu
Updated September 19, 2021